Abstract
The rapid progress in artificial intelligence technologies based on deep and convolutional neural networks (CNN) has led to an enormous interest in efficient implementations of neural networks in embedded devices and hardware. We present a new software framework for the development of (approximate) convolutional neural networks in which the user can define and use various data types for forward (inference) procedure, backward (training) procedure and weights. Moreover, non-standard arithmetic operations such as approximate multipliers can easily be integrated into the CNN under design. This flexibility enables to analyze the impact of chosen data types and non-standard arithmetic operations on CNN training and inference efficiency. The framework was implemented in C++ and evaluated using several case studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.