Abstract
Aims/IntroductionPrevious studies have reported osteoporosis measured by dual-energy X-ray absorptiometry in younger patients with type 1 diabetes. Limitations of 2-D imaging, however, limit the precision of dual-energy X-ray absorptiometry for the measurement of bone mineral density and bone strength.Materials and MethodsThree-dimensional quantitative computed tomography was used to calculate volumetric-bone mineral density (vBMD) and strength in femoral bone subfractions. A total of 17 male type 1 diabetes patients and 18 sex-matched healthy controls aged from 18 to 49 years were investigated in the present cross-sectional study. Patients with overt nephropathy were excluded.ResultsType 1 diabetes patients had significantly lower cortical vBMD in the femoral neck, and significantly lower total vBMD, cortical thickness and cortical cross-sectional area (cortical CSA) in the intertrochanter. Bone strength estimated by the buckling ratio (an index of cortical instability) of the intertrochanter was significantly higher in type 1 diabetes patients. The following serum bone markers were comparable between the two groups: bone-specific alkaline phosphatase, N-terminal propeptide of type 1 procollagen, osteocalcin, pentosidine and homocysteine. Serum insulin-like growth factor-1 values were significantly lower in the type 1 diabetes patients than in controls. Serum insulin-like growth factor-1values were positively correlated with serum bone formation markers, and the total vBMD of the femoral neck and lumbar spine in type 1 diabetes patients.ConclusionsThe present study is the first investigation by quantitative computed tomography measurement to show cortical instability and lower vBMD in the intertrochanter of young and middle-aged type 1 diabetes patients. Low insulin-like growth factor-1 might be a causative factor for osteoporosis in type 1 diabetes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.