Abstract
In this work, type-V intermittency is studied from Markov binary block visibility graphs perspective. We considered a piecewise quadratic Poincare map that is a simple model to exhibit this type of intermittency. The mechanism of type-V intermittency is collision of a stable fixed point with a point of discontinuity of the Poincare map. We study the behavior of a dynamical system in the vicinity of the discontinuous or non-differentiable points (NDP) using networks language. Numerical results showed that there is a logarithmic scaling law logε for the average laminar length of the type-V intermittency. We also described their properties based on statistical tools such as the length between reinjection points and the average laminar length. For further investigation, we verified the degree distribution of the complex network generated by type-V intermittency time series and finally, predicted the behavior of type-V intermittency by the proposed theoretical degree distributions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.