Abstract

Perron-Frobenius theorem describe five properties of irreducible nonnegative matrix. Leslie matrix is one of nonnegative matrix. Leslie matrix that used in this research is limited to the irreducible Leslie matrix. In previous research has been proven that irreducible Leslie matrix satisfies three properties in Perron-Frobenius theorem by spectral radius. This research completed the previous research, proving that irreducible Leslie matrix has a unique Perron vector and satisfies Collatz Wielandt formula. Leslie matrix is a primitive matrix. It is used to calculate the number of populations in the future. Growth of population is interpreted by value spectral radius of Leslie matrix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.