Abstract

The optimal milking cluster should milk as gently as possible to minimize the mechanical effect on the teat tissue at an optimal milking performance and milk quality. The objective of this study was to investigate the influence of liner shape (round vs. triangular) and type of cluster ventilation (claw vs. mouthpiece chamber; MPC) on milking performance and vacuum at the teat end and in the MPC. Our hypothesis was that liner shape and cluster ventilation affect milking performance and MPC vacuum. Six Holstein Friesian cows were milked twice daily over 12 d with a bucket milker, using 4 different cluster types that combined liner shape and type of cluster ventilation at 3 different system vacuum settings (35, 42, and 50 kPa) in an incomplete randomized block design. Milk flow and vacuum in the MPC, at the teat end (measured in the short milk tube), and in the short pulse tube were continuously recorded during milking. Milk flow was higher, and hence main milking time was shorter, with the round than with the triangular liners. The MPC vacuum was lower in round than triangular liners, which was caused by higher air leakage between teat and liner barrel in the triangular liners. The MPC vacuum, as well as its cyclic fluctuations, increased at the end of milking (immediately before cluster detachment) in all cluster types, with the highest amplitude of fluctuation in the triangular liners with MPC ventilation. The MPC ventilation reduced the MPC vacuum in both liner types at the end of milking, and also in triangular liners during peak milk flow. Despite the observed differences of MPC vacuum, the ventilation type did not affect milking performance. However, milking with triangular MPC-ventilated liners caused an increased proportion of foamed milk, which could potentially have a negative effect on milk quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.