Abstract

We present a type system and inference algorithm for a rich subset of JavaScript equipped with objects, structural subtyping, prototype inheritance, and first-class methods. The type system supports abstract and recursive objects, and is expressive enough to accommodate several standard benchmarks with only minor workarounds. The invariants enforced by the types enable an ahead-of-time compiler to carry out optimizations typically beyond the reach of static compilers for dynamic languages. Unlike previous inference techniques for prototype inheritance, our algorithm uses a combination of lower and upper bound propagation to infer types and discover type errors in all code, including uninvoked functions. The inference is expressed in a simple constraint language, designed to leverage off-the-shelf fixed point solvers. We prove soundness for both the type system and inference algorithm. An experimental evaluation showed that the inference is powerful, handling the aforementioned benchmarks with no manual type annotation, and that the inferred types enable effective static compilation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.