Abstract

Neisseria gonorrhoeae is the etiological factor of the sexually transmitted gonorrhea disease that may lead, under specific conditions, to systemic infections. The gonococcal genome encodes many restriction modification (RM) systems, which main biological role is to defend the pathogen from potentially harmful foreign DNA. However, RM systems seem also to be involved in several other functions. In this study, we examined the effect of inactivation the N. gonorrhoeae FA1090 ngoAXmod gene encoding M.NgoAX methyltransferase on the global gene expression, biofilm formation, interactions with human epithelial host cells and overall bacterial growth. Expression microarrays showed at least a twofold deregulation of a total of 121 genes in the NgoAX knock-out mutant compared to the wild-type (wt) strain under standard grow conditions. Genes with changed expression levels encoded mostly proteins involved in cell metabolism, DNA replication and repair or regulating cellular processes and signaling (such as cell wall/envelop biogenesis). As determined by the assay with crystal violet, the NgoAX knock-out strain formed a slightly larger biofilm biomass per cell than the wt strain. Live biofilm observations showed that the biofilm formed by the gonococcal ngoAXmod gene mutant is more relaxed, dispersed and thicker than the one formed by the wt strain. This more relaxed feature of the biofilm, in respect to adhesion and bacterial interactions, can be involved in pathogenesis. Moreover, the overall adhesion of mutant bacterial cells to human cells was lower than adhesion of the wt gonococci [adhesion index = 0.672 (±0.2) and 2.15 (±1.53), respectively]; yet, a higher number of mutant than wt bacteria were found inside the Hec-1-B epithelial cells [invasion index = 3.38 (±0.93) × 105 for mutant and 4.67 (±3.09) × 104 for the wt strain]. These results indicate that NgoAX knock-out cells have lower ability to attach to human cells, but more easily penetrate inside the host cells. All these data suggest that the NgoAX methyltransferase, may be implicated in N. gonorrhoeae pathogenicity, involving regulation of biofilm formation, adhesion to host cells and epithelial cell invasion.

Highlights

  • Gonorrhea, caused by Neisseria gonorrhoeae, is the second most common sexually transmitted disease in the world

  • We studied the impact of M.NgoAX methyltransferase inactivation on the overall gene expression and fitness of N. gonorrhoeae FA1090

  • The ngoAXmod gene was designated as a candidate for phase variation (Snyder et al, 2001; Srikhanta et al, 2009) and we have previously observed that the restriction phenotype associated with the NgoAX restriction modification (RM) system can switch randomly (Adamczyk-Poplawska et al, 2009)

Read more

Summary

Introduction

Gonorrhea, caused by Neisseria gonorrhoeae, is the second most common sexually transmitted disease in the world. Every year, this exclusively human pathogen infects about 106 million people (WHO, 2012). The mucous membrane of the cervix is the most common site of infection of N. gonorrhoeae in women (Ison, 2011), in which, gonococci may cause asymptomatic or symptomatic cervical infections, or upper genital tract disease (Bozicevic et al, 2006; Edwards and Butler, 2011). Undetected or untreated gonorrhea can lead to very serious complications These include: pelvic inflammatory disease, ectopic pregnancy, infertility in women and men, and systemic infections (Holmes, 1999; Ison, 2011; Unemo and Nicholas, 2012). Phase variation is a well-characterized mechanism by which numerous bacterial species, including N. gonorrhoeae, introduce phenotypic diversity within a population and increase pathogenicity (Snyder et al, 2001; Jordan et al, 2005; Srikhanta et al, 2009)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call