Abstract

Layered Pnictides are proven to be a great reservoir for superconductors in the past and ternary zirconium pnictide chalcogenides of ZrXY-type (X = P, As; Y = S, Se) might be a platform for new superconductors. The superconducting properties of carefully grown (chemical transport reaction) single crystals of ZrP1.54S0.46 with a transition temperature of Tc = 3.5K are investigated. This compound (PbFCl structure type) contains square planar nets: One of the nets is completely occupied (no vacancies) by P, the other one characterized by a random distribution of P and S (full occupation: no vacancies). Besides zero-field-cooling (zfc), field-cooling (fc), and remanent moment (rem) measurements, especially magnetization and ac susceptibility measurements are performed. A nearly ideal type-II behavior with a Ginzburg-Landau parameter κ = 24 is found. The magnetization curves between Bc1 and Bc2 for increasing field are in excellent agreement with theoretical calculations performed by E. H. Brandt based on the Ginzburg-Landau theory. The decreasing branches of the magnetization curves are asymmetric about the field axis indicating weak pinning and also large diamagnetic behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call