Abstract

Type II collagen is an important component of cartilage; however, little is known about its effect on skin wound healing. In this study, type II collagen was extracted from the cartilage of Acipenser baerii and its effect on in vitro and in vivo wound healing was compared to type I collagen derived from tilapia skin. Sturgeon cartilage collagen (SCC) was composed of α1 chains and with a thermal denaturation (Td) at 22.5 and melting temperature (Tm) at 72.5 °C. Coating SCC potentiated proliferation, migration, and invasion of human dermal fibroblast adult (HDFa) cells. Furthermore, SCC upregulated the gene expression of extracellular matrix (ECM) components (col Iα1, col IIIα1, elastin, and Has2) and epithelial-mesenchymal transition (EMT) molecules (N-cadherin, Snail, and MMP-1) in HDFa. Pretreatment with Akt and mitogen-activated protein kinase (MAPK) inhibitors significantly attenuated the HDFa invasion caused by SCC. In mice, the application of SCC on dorsal wounds effectively facilitated wound healing as evidenced by 40–59% wound contraction, whereas the untreated wounds were 18%. We observed that SCC reduced inflammation, promoted granulation, tissue formation, and ECM deposition, as well as re-epithelialization in skin wounds. In addition, SCC markedly upregulated the production of growth factors in the dermis, and dermal and subcutaneous white adipose tissue; in contrast, the administration of tilapia skin collagen (TSC) characterized by typical type I collagen was mainly expressed in the epidermis. Collectively, these findings indicate SCC accelerated wound healing by targeting fibroblast in vitro and in vivo.

Highlights

  • The skin is the largest organ in mammalian organisms

  • We demonstrated that collagen from Acipenser baerii and tilapia skin collagen (TSC) both stimulated human fibroblast proliferation, migration, and wound healing in mice, but with different targeted cell types in the skin tissue

  • We observed that the topical application of Sturgeon cartilage collagen (SCC) and TSC significantly increased the levels of the above four growth factors in the skin wound, with a clearly different expressing pattern

Read more

Summary

Introduction

The skin is the largest organ in mammalian organisms It acts as the main barrier and plays several vital roles in immunity, fluid homeostasis, thermoregulation, excretion, sensation, and metabolic functions of the body [1]. When the skin is wounded, the tissue undergoes healing in the ordered steps of homeostasis, inflammation, proliferation, and remodeling, to promote wound closure and eventually restore the normal tissues [1,2]. This physiological healing process is highly coordinated and involves interactions between various cellular and molecular networks in the wound [2,3]. Chronic wounds are medical and healthcare burdens that result in a poor quality of life in patients, causing pain, loss of mobility, and increased

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.