Abstract

Researches on environmentally friendly semiconductor photocatalysts for efficient photocatalytic hydrogen evolution have important practical significance. Here, using first-principles calculations, the CeO2(111)/hBN heterojunction was conceived. The influence of the interface effect on the structural, electronic and optical properties of the heterojunction was investigated in detail. The band gap of the heterojunction is smaller than the two individual components and forms a type-II heterojunction, improving the photocatalytic activity. Furthermore, by doping two C atoms, the band gap of heterojunction was further narrowed. Both the oxidation and reduction potential of CeO2(111)/hBN heterojunction meet the requirements of water splitting and has certain advantages over other photocatalysts in the ability for photocatalytic hydrogen evolution. The study revealed the possible mechanism of CeO2(111) and hBN monolayers compositing to facilitate photocatalysis and hydrogen evolution ability, which may provide a possible reference direction for the practical design of more high-quality semiconductor photocatalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call