Abstract

Toxin-antitoxin (TA) systems are small genetic loci composed of two adjacent genes: a toxin and an antitoxin that prevents toxin action. Despite their wide distribution in bacterial genomes, the reasons for TA systems being on chromosomes remain enigmatic. In this review, we focus on type I TA systems, composed of a small antisense RNA that plays the role of an antitoxin to control the expression of its toxin counterpart. It does so by direct base-pairing to the toxin-encoding mRNA, thereby inhibiting its translation and/or promoting its degradation. However, in many cases, antitoxin binding is not sufficient to avoid toxicity. Several cis-encoded mRNA elements are also required for repression, acting to uncouple transcription and translation via the sequestration of the ribosome binding site. Therefore, both antisense RNA binding and compact mRNA folding are necessary to tightly control toxin synthesis and allow the presence of these toxin-encoding systems on bacterial chromosomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call