Abstract

Superconductivity of the second kind was observed in many 3D Weyl and Dirac semi-metals while in the PdTe2, superconductivity is clearly of the first kind. This is very rare in Dirac semi—metals, but is expected in clean conventional metallic superconductors with 3D parabolic dispersion relation. The conduction bands in this material exhibit the linear (Dirac) dispersion only along two directions, while in the third direction the dispersion is parabolic. Therefore the ‘hybrid’ Dirac-parabolic material is intermediate between the two extremes. A microscopic pairing theory is derived for arbitrary tilt parameter of the 2D cone and used to determine anisotropic coherence lengths, the penetration depths and applied to recent extensive experiments. Magnetic properties of these superconductors are then studied in the parallel to the layers magnetic field on the basis of microscopically derived Ginzburg–Landau effective theory for the order parameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.