Abstract

Rheumatoid arthritis (RA) is an inflammatory debilitating disease that affects the joints in the early and productive phases of an individual's life. Several cytokines have been linked to the disease pathogenesis and are known to contribute to the inflammatory state characteristic of RA. The participation of type I interferon (IFN) in the pathogenesis of the disease has been already described as well as the identity of the genes that are regulated by this molecule, which are collectively known as the type I IFN signature. These genes have several functions associated with apoptosis, transcriptional regulation, protein degradation, Th2 cell induction, B cell proliferation, etc. This article evaluated the expression of several genes of the IFN signature in different stages of disease and their correlation with the levels of anticitrullinated protein antibodies (ACPA) anticarbamylated protein (Anti-CarP) antibodies. Samples from individuals with early and established RA, high-risk individuals (ACPA+ and ACPA-), and healthy controls were recruited at "Unidad de Artritis y Rheumatismo" (Rheumatism and Arthritis Unit) in Guadalajara Jalisco Mexico. Determinations of ACPA were made with Eurodiagnostica ACPA plus kit. Anti-CarP determinations were made according to previously described protocols. RNA was isolated, and purity and integrity were determined according to RNA integrity number >6. Gene expression analysis was made by RT-qPCR using specific primers for mRNAs of the type I IFN signature. Relative gene expression was calculated according to Livak and Schmitgen. Significant differences in gene expression were identified when comparing the different groups for MXA and MXB (P < 0.05), also when comparing established RA and ACPA- in both IFIT 1 and G15. An increased expression of ISG15 was identified (P < 0.05), and a clear tendency toward increase was identified for HERC5. EPSTRI1, IFI6, and IFI35 were found to be elevated in the chronic/established RA and early RA (P < 0.05). Significant correlations were identified for the IFN signature genes with the levels of ACPA and anti-CarP (P < 0.05). Our data confirm previous observations in the role of IFN signature and the pathogenesis of RA. Also, we provide evidence of an association between several genes of the IFN signature (that regulate Th2 cells and B cell proliferation) with the levels of anti-CarP antibodies and ACPA.

Highlights

  • Rheumatoid arthritis (RA) is a chronic, inflammatory, autoimmune disease that affects mainly the diarthrodial joints and is the cause of progressive and incapacitating joint destruction

  • Rheumatoid arthritis is an inflammatory disease that is characterized by the generation of autoreactive clones of T and B cells and, in consequence, by the generation of autoantibodies [45]

  • It has been proposed that autoantibodies could be involved in the generation of IFN through the activation of the pDC, and it could be implicated in the perpetuation of the inflammatory process as has been previously described for LES [46, 47]

Read more

Summary

Introduction

Rheumatoid arthritis (RA) is a chronic, inflammatory, autoimmune disease that affects mainly the diarthrodial joints and is the cause of progressive and incapacitating joint destruction. Systemic manifestations are present in individuals suffering from the disease, which can be classified as extraarticular manifestations It is characterized by the presence of inflammatory immune cells in the joints. The participation of type I interferon (IFN) in the pathogenesis of the disease has been already described as well as the identity of the genes that are regulated by this molecule, which are collectively known as the type I IFN signature. These genes have several functions associated with apoptosis, transcriptional regulation, protein degradation, Th2 cell induction, B cell proliferation, etc. This article evaluated the expression of several genes of the IFN signature in different stages of disease and their correlation with the levels of anticitrullinated protein antibodies (ACPA) anticarbamylated protein (Anti-CarP) antibodies

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call