Abstract

BackgroundThe crucial role of type I interferon (IFN-I, IFN-α/β) is well known to control central nervous system (CNS) neuroinflammation caused by neurotrophic flaviviruses such as Japanese encephalitis virus (JEV) and West Nile virus. However, an in-depth analysis of IFN-I signal-dependent cellular factors that govern CNS-restricted tropism in JEV infection in vivo remains to be elucidated.MethodsViral dissemination, tissue tropism, and cytokine production were examined in IFN-I signal-competent and -incompetent mice after JEV inoculation in tissues distal from the CNS such as the footpad. Bone marrow (BM) chimeric models were used for defining hematopoietic and tissue-resident cells in viral dissemination and tissue tropism.ResultsThe paradoxical and interesting finding was that IFN-I signaling was essentially required for CNS neuroinflammation following JEV inoculation in distal footpad tissue. IFN-I signal-competent mice died after a prolonged neurological illness, but IFN-I signal-incompetent mice all succumbed without neurological signs. Rather, IFN-I signal-incompetent mice developed hemorrhage-like disease as evidenced by thrombocytopenia, functional injury of the liver and kidney, increased vascular leakage, and excessive cytokine production. This hemorrhage-like disease was closely associated with quick viral dissemination and impaired IFN-I innate responses before invasion of JEV into the CNS. Using bone marrow (BM) chimeric models, we found that intrinsic IFN-I signaling in tissue-resident cells in peripheral organs played a major role in inducing the hemorrhage-like disease because IFN-I signal-incompetent recipients of BM cells from IFN-I signal-competent mice showed enhanced viral dissemination, uncontrolled cytokine production, and increased vascular leakage. IFN-I signal-deficient hepatocytes and enterocytes were permissive to JEV replication with impaired induction of antiviral IFN-stimulated genes, and neuron cells derived from both IFN-I signal-competent and -incompetent mice were vulnerable to JEV replication. Finally, circulating CD11b+Ly-6C+ monocytes infiltrated into the distal tissues inoculated by JEV participated in quick viral dissemination to peripheral organs of IFN-I signal-incompetent mice at an early stage.ConclusionAn IFN-I signal-dependent model is proposed to demonstrate how CD11b+Ly-6C+ monocytes are involved in restricting the tissue tropism of JEV to the CNS.

Highlights

  • Flaviviruses are positive-sense, single-stranded RNA viruses transmitted principally by mosquitos and include dengue virus (DenV), Zika virus (ZIKV), Japanese encephalitis virus (JEV), and West Nile virus (WNV) [1]

  • Our study proposes a model of Type I interferon (IFN-I) signal-dependent cellular factors in viral tissue tropism to induce central nervous system (CNS) neuroinflammation following distal JEV inoculation

  • To test whether IFN-I signaling plays a role in inducing neurological disorders (JE) following JEV infection, IFN-I signal-competent (BL/6) and -incompetent (IFNAR1 KO) mice were infected with JEV at different doses (1 × 106, 5 × 106, 1 × 107, and 5 × 107 ffu) via the intraperitoneal or footpad route for systemic or local infection, respectively

Read more

Summary

Introduction

Flaviviruses are positive-sense, single-stranded RNA viruses transmitted principally by mosquitos and include dengue virus (DenV), Zika virus (ZIKV), Japanese encephalitis virus (JEV), and West Nile virus (WNV) [1]. CNS invasion by JEV causes the stimulation of microglia and glia and infiltrated leukocytes, which subsequently leads to indirect neuronal killing via a huge production of pro-inflammatory cytokines (IL-6 and TNF-a) and soluble neurotoxin-like mediators [8, 9]. This suggests that JE is an immunopathological disease caused by uncontrolled over-activation of innate and adaptive immune cells, resulting in neurological disorders in the CNS. An in-depth analysis of IFN-I signal-dependent cellular factors that govern CNS-restricted tropism in JEV infection in vivo remains to be elucidated

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call