Abstract

Legionella pneumophila is an intracellular pathogen whose replication in macrophages is mainly controlled by IFN-gamma. Freshly isolated peritoneal macrophages elicited in vivo with thioglycolate (TG) from A/J mice are highly permissive to L. pneumophila growth in vitro, while TG-elicited macrophages from CD1 mice are resistant. In this study, we show that when CD1 TG-macrophages are cultured for 7 days, they become permissive to Legionella infection. We demonstrate that treatment with type I IFN (IFN-alphabeta) totally inhibits the growth of L. pneumophila in both freshly isolated A/J and in vitro-aged CD1 TG-macrophages. IFN-alphabeta protective effect on permissive macrophages was comparable to that induced by IFN-gamma. Even low doses of either IFN-alpha or IFN-beta alone were effective in inhibiting L. pneumophila multiplication in macrophage cultures. Notably, treatment of resistant, freshly isolated CD1 TG-macrophages with Ab to mouse IFN-alphabeta significantly enhanced their susceptibility to Legionella infection in vitro, thus implying a role of endogenous IFN-alphabeta in mediating the natural resistance of macrophages to L. pneumophila infection. Finally, addition of anti-IFN-gamma-neutralizing Ab did not restore Legionella growth in IFN-alpha- or IFN-beta-treated A/J or CD1 permissive macrophages, indicating that IFN-alphabeta effect was not mediated by IFN-gamma. This observation was further confirmed by the finding that IFN-alphabeta was effective in inhibiting L. pneumophila replication in macrophages from IFN-gamma receptor-deficient mice. Taken together, our results provide the first evidence for a role of IFN-alphabeta in the control of L. pneumophila infection in mouse models of susceptible macrophages and suggest the existence of different pathways for the control of intracellular bacteria in macrophages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.