Abstract

To understand the mechanisms regulating osteoid removal by osteoblasts, mouse calvarial osteoblasts were grown on 14C-labelled type I collagen films and stimulated with 1,25-dihydroxyvitamin D-3 (2.5.10(-8) M) for 48-72 h. In the presence of 5% non-inhibitory rabbit serum this resulted in a 2-3-fold increase in collagen degradation and a dramatic change in osteoblast morphology, when compared with untreated osteoblasts. Collagenolysis was accompanied by increased synthesis and release of latent collagenase, gelatinase and stromelysin and a concomitant decrease in their specific inhibitor, TIMP (tissue inhibitor of metalloproteinases). In serum-free medium, osteoblasts failed to degrade collagen, but their ability to lyse collagen could be restored by adding plasminogen (5 micrograms/ml) to the cultures. Plasminogen-dependent collagenolysis was inhibited by human recombinant TIMP (5 units/ml), demonstrating that plasmin, derived from plasminogen, activated latent collagenase and did not itself degrade collagen. Plasminogen activator production was confirmed by culturing osteoblasts on 125I-labelled fibrin plates. Comparison with urokinase-type and tissue-type plasminogen activator standards suggested that osteoblast plasminogen activator was predominantly cell-associated and likely to be of the urokinase type. Immunocytochemistry indicated that osteoblasts also constitutively produce plasminogen activator inhibitor-1. These findings provide evidence for the involvement of a plasminogen-plasmin-latent metalloproteinase activation cascade in type I collagen degradation by osteoblasts, and for its regulation by TIMP and plasminogen activator inhibitor-1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.