Abstract
The output pulses of a commercial high-power femtosecond fiber laser or amplifier are typically around 300-500 fs with a wavelength around 1030 nm and 10s of $\mu$J pulse energy. Here we present a numerical study of cascaded quadratic soliton compression of such pulses in LiNbO$_3$ using a type I phase matching configuration. We find that because of competing cubic material nonlinearities compression can only occur in the nonstationary regime, where group-velocity mismatch induced Raman-like nonlocal effects prevent compression to below 100 fs. However, the strong group velocity dispersion implies that the pulses can achieve moderate compression to sub-130 fs duration in available crystal lengths. Most of the pulse energy is conserved because the compression is moderate. The effects of diffraction and spatial walk-off is addressed, and in particular the latter could become an issue when compressing in such long crystals (around 10 cm long). We finally show that the second harmonic contains a short pulse locked to the pump and a long multi-ps red-shifted detrimental component. The latter is caused by the nonlocal effects in the nonstationary regime, but because it is strongly red-shifted to a position that can be predicted, we show that it can be removed using a bandpass filter, leaving a sub-100 fs visible component at $\lambda=515$ nm with excellent pulse quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.