Abstract
In this study we investigated the effects of type I and II mGlu receptors ligands in glycine extracellular concentrations at the periaqueductal gray (PAG) level by using in vivo microdialysis, in conscious rats. An agonist of type I mGlu receptors, (S)-3,5-DHPG (1 and 5 mM), but not a selective agonist for mGlu5 receptors, CHPG (3 and 5 mM), was noticed to increase the dialysate glycine levels in a concentration-dependent manner (60±15% and 136±13%, respectively). CPCCOEt (1 mM), a selective mGlu1 receptor antagonist, perfused in combination with (S)-3,5-DHPG, counteracted the effect induced by (S)-3,5-DHPG, but did not change per se the extracellular PAG glycine values, even at the highest dosage used (2 mM). MPEP (1 and 2 mM), a selective antagonist of mGlu5 receptor, did not modify extracellular glycine level. An agonist of type II mGlu receptors, 2R,4R-APDC (25 and 50 μM), decreased the dialysate glycine in a concentration-dependent manner (−26±4% and −54±6%, respectively). The 2R,4R-APDC-induced decrease in extracellular glycine was prevented by EGlu (0.5 mM), a selective type II mGlu receptors antagonist. EGlu (0.5 and 1 mM), per se, led to a significant decrease (–56±7% and –57±2%, respectively) in extracellular PAG glycine too. This effect was prevented by DPCPX (100 μM), a selective antagonist for A1 adenosine receptors, but was not affected by CPA (1 mM), a selective A1 adenosine receptors agonist. Intra-PAG perfusion of CPA (0.1–1 mM) decreased the extracellular PAG glycine values (–47±13%) with 1 mM concentration. The CPA-induced effect was prevented by DPCPX (100 μM), and resulted to be additive with the 2R,4R-APDC-induced decrease in glycine values. DPCPX (1 mM) increased per se extracellular glycine (48±7%) at the highest dose used. Dipyridamole (100 μM), an inhibitor of both adenosine reuptake and phosphodiesterases, decreased extracellular glycine (–28±7%). Extracellular concentrations of glutamine never changed throughout this study. These data show opposing effects of type I and II mGlu receptors in the regulation of PAG glycine values. Moreover, functional interaction between type II mGlu and adenosine A1 receptors, which possibly operate through a common transductional pathway, may be relevant in the physiological control of glycine release in awake, freely moving rats at the periaqueductal gray matter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.