Abstract
Cross‐hole pneumatic injection tests have been conducted in 16 vertical and inclined boreholes in unsaturated fractured tuffs at the Apache Leap Research Site (ALRS) near Superior, Arizona. Their purpose was to characterize the bulk pneumatic properties and connectivity of fractures at the site on scales ranging from meters to several tens of meters. We describe the design, conduct, and type curve interpretation of one of these tests. Our cross‐hole type curves are modified after Hsieh and Neuman [1985] to consider single‐phase airflow and extended to consider the effects of storage and skin in monitoring intervals. Cross‐hole type curves of pressure derivatives and recovery are included for improved pneumatic characterization of the site. We analyze recorded pressures in each monitoring interval separately from those in other intervals while treating the fractured rock as a uniform, isotropic porous continuum. Each record yields an equivalent directional air permeability and air‐filled porosity for fractures that connect the corresponding monitoring and injection intervals. Both parameters are found to vary considerably from one monitoring interval to another, reflecting the nonuniform nature of pneumatic rock properties at the ALRS. The geometric mean of these equivalent permeabilities is found to be larger by a factor of 50 than that obtained from single‐hole pneumatic injection tests on a nominal scale of 1–3 m (single‐hole tests yield only limited information about porosities, which therefore cannot be meaningfully compared with cross‐hole results). Our results find support in numerical inverse modeling of cross‐hole tests at the site by Vesselinov [2000; see also Illman et al., 1998; Vesselinov et al, 2000]. Vesselinov [2000] has further demonstrated [see also Chen et al., 2000] that a similar scale effect is exhibited by fracture porosity at the ALRS and that both scale effects disappear when cross‐hole tests at the site are interpreted by means of a numerical inverse model, which resolves heterogeneities down to a scale of 1 m. When considered jointly with these and other studies of the site, our analysis implies that the pneumatic pressure behavior of unsaturated fractured tuffs at the ALRS can be described quite accurately by means of linearized single‐phase airflow equations; this behavior can be interpreted by treating the rock as a continuum on scales ranging from meters to tens of meters: the continuum is representative primarily of interconnected fractures; as these fractures are filled primarily with air, their pneumatic permeabilities and porosities are close to the bulk intrinsic properties of fractures at the site: these intrinsic properties vary randomly with location and direction across the ALRS, and they depend strongly on the scale at which they are determined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.