Abstract
The esterification of cholesterol derived from human low density lipoprotein (LDL) or fetal bovine serum (FBS) was deficient in cultured fibroblasts from subjects with heterozygous and homozygous type C Niemann-Pick (NPC) disease. Failure to significantly esterify LDL-derived cholesterol resulted in abnormal accumulation of predominantly unesterified cholesterol in homozygous NPC fibroblasts. Compared with normal and homozygous fibroblasts, heterozygous NPC fibroblasts synthesized intermediate levels of cholesteryl ester during the initial 6 h of incubation with LDL. The rate of cholesterol esterification in heterozygous cells was normal when measured over a 24-h period of incubation with LDL. In addition to demonstrating a defect in cholesterol esterification, homozygous NPC fibroblasts accumulated more total cholesterol when incubated with LDL or FBS than normal fibroblasts accumulated. When heterozygous NPC fibroblasts were incubated with LDL or FBS, cellular accumulation of cholesterol reached levels that were high-normal or intermediary between levels observed in normal and homozygous NPC fibroblasts. The partial expression of these metabolic errors in the heterozygous genotype relevantly links these errors to the primary mutation of this disorder.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.