Abstract

Type 2 von Willebrand disease causing defective von Willebrand factor-dependent platelet function comprises mainly subtypes 2A, 2B and 2M. The diagnosis of type 2 von Willebrand disease may be guided by the observation of a disproportionately low level of ristocetin co-factor activity or collagen-binding activity relative to the von Willebrand factor antigen level. The decreased platelet-dependent function is often associated with an absence of high molecular weight multimers (types 2A and 2B), but the high molecular weight multimers may also be present (type 2M and some type 2B), and supranormal multimers may exist (as in the Vicenza variant). Today, the identification of mutations in particular domains of the pre-pro-von Willebrand factor is helpful to classify these variants and to provide further insight into the structure–function relationship and the biosynthesis of von Willebrand factor. Thus, mutations in the D2 domain, involved in the multimerization process, are found in patients with type 2A, formerly named IIC von Willebrand disease. Mutations in the D3 domain characterize the Vicenza variant, or type IIE patients. Mutations in the A1 domain may modify the binding of von Willebrand factor multimers to platelets, either increasing (type 2B) or decreasing (types 2M and 2A/2M) the affinity of von Willebrand factor for platelets. In type 2A disease, molecular abnormalities identified in the A2 domain, which contains a specific proteolytic site, are associated with alterations in folding that impair the secretion of von Willebrand factor or increase its susceptibility to proteolysis. Finally, a mutation localized in the C terminus cysteine knot domain, which is crucial for the dimerization of von Willebrand factor subunit, has been identified in a rare subtype 2A, formerly named IID.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call