Abstract

Type 2 iodothyronine deiodinase (D2) is an enzyme that catalyzes the production of triiodothyronine (T3) from thyroxine (T4) and plays a critical role in providing the local intracellular T3. Although D2 is highly expressed in brown adipose tissue, it was thought that D2 is hardly expressed in white adipose tissue. In the present study, we examined whether D2 is expressed in human preadipocytes, using human mesenteric and subcutaneous preadipocytes (HMPA and HSCPA, respectively). HMPA and HSCPA were purchased and cultured in the preadipocyte medium containing 10% fetal bovine serum. We measured D2 activity and mRNA level in HMPA and HSCPA incubated with or without dibutyryl cyclic adenosine monophosphate [(Bu)₂cAMP]. D2 activity and mRNA were detectable in human HMPA and HSCPA. The apparent Michaelis-Menten constant (K(m)) value for T4 in HMPA was 2.1 ± 0.2 nM, and the maximum velocity (V(max)) value was 333.3 ± 28.0 femtomols of I⁻ released/mg protein/hour, respectively. On the other hand, the apparent K(m) value for T4 in HSCPA was 2.0 ± 0.2 nM and the V(max) value was 91.2 ± 8.7 femtomols of I⁻ released/mg protein/hour, respectively. D2 activities in HMPA and HSCPA incubated with 1 mM (Bu)₂cAMP for 24 hours were 7-fold (HMPA) and 3-fold (HSCPA) higher than those without (Bu)₂cAMP, respectively. D2 mRNA levels in HMPA and HSCPA incubated with 1 mM (Bu)₂cAMP for 3 hours were 10-fold (HMPA) and 5-fold (HSCPA) higher than those without (Bu)₂cAMP, respectively. In the present study, we have clearly demonstrated that D2 activity and mRNA are present in the human preadipocytes from both mesenteric and subcutaneous adipose tissue. Our experiments are the first ones that identify human preadipocytes as one of the sources of T3 production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.