Abstract

Atopic dermatitis (AD) is a chronic relapsing inflammatory skin disease. Although murine studies have demonstrated that type 2 innate lymphoid cells (ILCs) mediate type 2 skin inflammation, their role in skin fibrosis in AD remains unclear. This study investigated whether type 2 ILCs are involved in skin fibrosis using an AD-like murine model. C57BL/6 mice were treated epicutaneously with Aspergillus fumigatus (Af) for 5 consecutive days per week for 5 weeks to induce skin fibrosis. Mature lymphocyte deficient Rag1-/- mice were also used to investigate the role of type 2 ILCs in skin fibrosis. The clinical score and transepidermal water loss (TEWL) were significantly higher in the AD group than in the control group. The AD group also showed significantly increased epidermal and dermal thicknesses and significantly higher numbers of eosinophils, neutrophils, mast cells, and lymphocytes in the lesional skin than the control group. The lesional skin of the AD group showed increased stain of collagen and significantly higher levels of collagen than the control group (10.4 ± 2.2 µg/mg vs. 1.6 ± 0.1 µg/mg, P < 0.05). The AD group showed significantly higher populations of type 2 ILCs in the lesional skin compared to the control group (0.08 ± 0.01% vs. 0.03 ± 0.01%, P < 0.05). These findings were also similar with the AD group of Rag1-/- mice compared to their control group. Depletion of type 2 ILCs with anti-CD90.2 monoclonal antibodies significantly improved clinical symptom score, TEWL, and infiltration of inflammatory cells, and significantly decreased levels of collagen were observed in the AD group of Rag1-/- mice (1.6 ± 0.0 μg/mg vs. 4.5 ± 0.3 μg/mg, P < 0.001). In the Af-induced AD-like murine model, type 2 ILCs were elevated, with increased levels of collagen. Additionally, removal of type 2 ILCs resulted in decreased collagen levels and improved AD-like pathological findings. These findings suggest that type 2 ILCs play a role in the mechanism of skin fibrosis in AD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.