Abstract

The cell death which characterizes the onset of the Hypersensitive Response (HR) is a very important weapon evolved by plants to block pathogen development. By the use of numerous plant/avirulent pathogen or plant/elicitor models, we have now obtained detailed signalling pathways allowing, after pathogen or elicitor perception, the control of the expression of specific sets of genes that contribute to cell death. However, our knowledge of the molecular actors involved in this process still remains limited. This is particularly true when regarding what happen in the nucleus. We recently reported that nuclear post-translational protein modifications are major processes that control cell death. Using the tobacco / cryptogein model, we showed that type 2 histone deacetylase activities, which act as negative regulators of cell death, depend on their phosphorylation status. In the present paper, we integrated all these results to propose a model depicting the putative nuclear signalling pathways controlling the establishment of cell death in tobacco in response to the cryptogein elicitor. This model highlights the role of the nuclear protein acetylation and phosphorylation in the establishment of plant defences.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call