Abstract

Diabetes, one of the top 10 causes of death worldwide, is associated with the interaction between lifestyle, psychosocial, medical conditions, demographic, and genetic risk factors. Predicting type 2 diabetes is important for providing prognosis or diagnosis support to allied health professionals, and aiding in the development of an efficient and effective prevention plan. Several works proposed machine-learning algorithms to predict type 2 diabetes. However, each work uses different datasets and evaluation metrics for algorithms’ evaluation, making it difficult to compare among them. In this paper, we provide a taxonomy of diabetes risk factors and evaluate 35 different machine learning algorithms (with and without features selection) for diabetes type 2 prediction using a unified setup, to achieve an objective comparison. We use 3 real-life diabetes datasets and 9 feature selection algorithms for the evaluation. We compare the accuracy, F-measure, and execution time for model building and validation of the algorithms under study on diabetic and non-diabetic individuals. The performance analysis of the models is elaborated in the article.

Highlights

  • Diabetes Mellitus, commonly referred to as diabetes, is a chronic disease that affects how the body turns food into energy [1]

  • We reveal the reasons behind the performance of these algorithms

  • If a diabetic patient having all the risk factors is clustered in the nondiabetes cluster, the patient will be removed by the k-means as an outlier

Read more

Summary

Introduction

Diabetes Mellitus, commonly referred to as diabetes, is a chronic disease that affects how the body turns food into energy [1]. It is one of the top 10 causes of death worldwide with 4.2 million deaths in 2019 [2]. There are three main types of diabetes: type 1, type 2, and gestational diabetes [1]. Type 1 diabetes is thought to be caused by an autoimmune reaction where the body’s immune system affects the insulinproducing beta-cells. Type 2 diabetes is caused by inadequate production of insulin and the inability of the body cells to respond to insulin properly.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call