Abstract

Effect of organochlorine pesticides (OCPs) mixtures on development of type 2 diabetes mellitus (T2DM) and the underlying mechanism, especially at protein levels, are largely unknown. We exposed a mixture of five OCPs to zebrafish at concentrations of 0, 0.05, 0.25, 2.5, and 25 μg/L for 12 weeks. Differentially expressed proteins (DEPs) were quantitatively identified in female zebrafish livers, and its functional study was conducted. The significantly high glucose and low insulin levels were observed only at 0.05 μg/L, linking to the different pattern of DEPs than other concentrations. A total of 1082 proteins was quantified, of which 321 proteins formed 6 clusters in protein dynamics analysis. The enriched pathways in cluster 3 showing distinct pattern of DEPs could explain the nonlinear response at 0.05 μg/L, indicating that OCP mixtures adversely affected proteins associated with mitochondrial function and energy metabolism. We proposed a feasible mechanism that decrease in expression of aldehyde dehydrogenase led to abnormal accumulation of aldehydes, reducing expression of glyceraldehyde 3-phosphate dehydrogenase, and resulting in disruption of glucose homeostasis. Our findings help to better understand the causality of T2DM by exposure to OCP mixtures and to identify biomarkers in the protein expression level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call