Abstract

Approximately 1% of low-redshift (z ≲ 0.3) optically selected type 2 active galactic nuclei (AGNs) show a double-peaked [O iii] narrow emission line profile in their spatially integrated spectra. Such features are usually interpreted as either due to kinematics, such as biconical outflows and/or disk rotation of the narrow line region (NLR) around single black holes, or due to the relative motion of two distinct NLRs in a merging pair of AGNs. Here, we report follow-up near-infrared (NIR) imaging and optical slit spectroscopy of 31 double-peaked [O iii] type 2 AGNs drawn from the Sloan Digital Sky Survey (SDSS) parent sample presented in Liu et al. The NIR imaging traces the old stellar population in each galaxy, while the optical slit spectroscopy traces the NLR gas. These data reveal a mixture of origins for the double-peaked feature. Roughly 10% of our objects are best explained by binary AGNs at (projected) kpc-scale separations, where two stellar components with spatially coincident NLRs are seen. ∼50% of our objects have [O iii] emission offset by a few kpc, corresponding to the two velocity components seen in the SDSS spectra, but there are no spatially coincident double stellar components seen in the NIR imaging. For those objects with sufficiently high-quality slit spectra, we see velocity and/or velocity dispersion gradients in [O iii] emission, suggestive of the kinematic signatures of a single NLR. The remaining ∼40% of our objects are ambiguous and will need higher spatial resolution observations to distinguish between the two scenarios. Our observations therefore favor the kinematics scenario with a single AGN for the majority of these double-peaked [O iii] type 2 AGNs. We emphasize the importance of combining imaging and slit spectroscopy in identifying kpc-scale binary AGNs, i.e., in no cases does one of these alone allow an unambiguous identification. We estimate that ∼0.5%–2.5% of the z ≲ 0.3 type 2 AGNs are kpc-scale binary AGNs of comparable luminosities, with a relative orbital velocity ≳ 150 km s−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.