Abstract

Mice lacking type 1 equilibrative nucleoside transporter (ENT1(-/-)) exhibit increased ethanol-preferring behavior compared with wild-type littermates. This phenotype of ENT1(-/-) mice appears to be correlated with increased glutamate levels in the nucleus accumbens (NAc). However, little is known about the downstream consequences of increased glutamate signaling in the NAc. To investigate the significance of the deletion of ENT1 and its effect on glutamate signaling in the NAc, we employed microdialysis and iTRAQ proteomics. We validated altered proteins using Western blot analysis. We then examined the pharmacological effects of the inhibition of the N-methyl-D-aspartate (NMDA) glutamate receptor and protein kinase Cγ (PKCγ) on alcohol drinking in wild-type mice. In addition, we investigated in vivo cyclic adenosine monophosphate response element binding activity using cyclic adenosine monophosphate response element-β-galactosidase mice in an ENT1(-/-) background. We identified that NMDA glutamate receptor-mediated downregulation of intracellular PKCγ-neurogranin-calcium-calmodulin dependent protein kinase type II signaling is correlated with reduced cyclic adenosine monophosphate response element binding activity in ENT1(-/-) mice. Inhibition of PKCγ promotes ethanol drinking in wild-type mice to levels similar to those of ENT1(-/-) mice. In contrast, an NMDA glutamate receptor antagonist reduces ethanol drinking of ENT1(-/-) mice. These findings demonstrate that the genetic deletion or pharmacological inhibition of ENT1 regulates NMDA glutamate receptor-mediated signaling in the NAc, which provides a molecular basis that underlies the ethanol-preferring behavior of ENT1(-/-) mice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.