Abstract

AbstractThe motion by curvature of networks is the generalization to finite union of curves of the curve shortening flow. This evolution has several peculiar features, mainly due to the presence of junctions where the curves meet. In this paper we show that whenever the length of one single curve vanishes and two triple junctions coalesce, then the curvature of the evolving networks remains bounded. This topological singularity is exclusive of the network flow and it can be referred as a “Type-0” singularity, in contrast to the well known “Type-I” and “Type-II” ones of the usual mean curvature flow of smooth curves or hypersurfaces, characterized by the different rates of blow-up of the curvature. As a consequence, we are able to give a complete description of the evolution of tree–like networks till the first singular time, under the assumption that all the “tangents flows” have unit multiplicity. If the lifespan of such solutions is finite, then the curvature of the network remains bounded and we can apply the results from [T. Ilmanen, A. Neves and F. Schulze, On short time existence for the planar network flow, J. Differential Geom. 111 2019, 1, 39–89] and [J. Lira, R. Mazzeo, A. Pluda and M. Saez, Short–time existence for the network flow, preprint 2021] to “restart” the flow after the singularity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call