Abstract

Amphibians such as the wood frogs,Rana sylvatica, are a primary example of a freeze-tolerant vertebrate that undergoes whole body freezing. Multiple adaptations including sequestering 65–70% of total body water as extracellular/extra organ ice and producing massive amounts of glucose as a cryoprotectant support this. Interestingly, the high glucose levels induced in response to freezing can amplify oxidative stress's effects (reactive oxygen species, ROS) and induce inflammation and mitochondrial dysfunction. Since both freezing and dehydration stress (independent of freezing) can render wood frogs hyperglycemic, this study focussed on these two stresses to elucidate the role of a scaffold protein thioredoxin interacting protein (TXNIP), which localizes in multiple compartments inside the cell under hyperglycemic conditions and mediate diverse stress responses. The results from this study suggest a stress-specific response of TXNIP in inducing the cell-damaging pathway of inflammasome activation via its cytoplasmic localization during freezing. Interestingly, mitochondrial localization of TXNIP did not leads to increase in its binding to thioredoxin 2 (TRX-2) and activating the dysfunction of this organelle by releasing a mitochondrial protein cytochrome c (Cyt c) in cytoplasm under both freezing and dehydration stresses. Post-translational modifications of TXNIP hinted on changes in the regulating proteins involved in the inflammasome and mitochondrial dysfunction pathways, whereas sequential differences (cytosine residues) of amphibian TXNIP (compared to mammalian) assessed via 3D-modeling attributed to its weak binding to TRX-2. Overall, this study summarizes differential role of proteins activated under freeze and dehydration induced hyperglycemic response in freeze tolerant wood frogs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call