Abstract
Background Reports have shown that formaldehyde (FA) can induce malignant transformation in cells via complicated mechanisms. Therefore, we aimed to investigate the possible molecules, pathways, and therapeutic agents for FA-induced head and neck cancer (HNC) by using bioinformatics approaches. Methods High throughput data were analyzed to screen the differentially expressed genes (DEGs) between FA-treated nasal epithelium cells and controls. Then, the functions of the DEGs were annotated and the hub genes, as well as the key genes, were further screened out. Afterwards, potential drugs were predicted by using the connectivity map (CMAP) tool. Results The information of a microarray-based dataset GSE21477 was extracted and analyzed. A total of 210 upregulated and 83 downregulated DEGs were generated, which might be enriched in various pathways, such as Cytokine–cytokine receptor interaction, Jak-STAT signaling pathway, and Toll-like receptor signaling pathway. Among these DEGs, three hub genes including TXNIP, CXCL1, and AREG, were identified as the key genes because they might affect the prognosis of HNC. Finally, a major active ingredient of blister beetles, Cantharidin, was predicted to be one of the potential drugs reversing FA-induced malignant transformation in head and neck epithelium cells. Conclusion The present analysis gave us a novel insight into the mechanisms of FA-induced malignant transformation in head and neck epithelium cells, and predicted several small agents for the prevention or treatment of HNC. Future experiment studies are warranted to validate the findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.