Abstract

Two-way reversible shape memory polymers (2W-SMPs) are highly desirable for many applications. We report for the first time the use of random copolymers with cocrystallizable monomeric units for the preparation of such polymer networks. Homopolymers and random copolymers of e-caprolactone and ω-pentadecalactone were designed and made by ring-opening polymerization with Candida antarctica lipase B as catalyst. The melting temperatures of these prepolymers may be adjusted by the use of various molar ratios of the comonomers. Upon thiol–ene cross-linking, the polymer network exhibited two-way reversible shape memory effects under both stress-free and stress conditions. The actuation temperature (TA) of the 2W-SMP under stress-free condition can be tuned in a broad range using a selected mixture of prepolymers followed by photo-cross-linking with a multifunctional cross-linker. Increasing the initial stretching stress amplitude led to an increased absolute strain change under both stress-free and stress condi...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call