Abstract

We report a first experimental observation of two-wavelength switching (2WS) and bistability with a 1310nm-Quantum Dot (QDot) Distributed Feedback (DFB) laser subject to external optical injection and operated in reflection. We experimentally demonstrate the switching of the emission wavelength of the QDot laser when an external optical signal is injected into one of the subsidiary longitudinally modes located in the longer wavelength side of the device’s lasing mode. Clockwise nonlinear switching and bistability are attained in all cases for both the emitting and the injected mode of the QDot laser as the injection strength is increased. Moreover, very high on-off contrast ratio is measured in the switching (and bistability) transition of the emission mode of the device. We have also analysed the switching properties of the 1310-QDot DFB laser as a function of the applied bias current and the initial wavelength detuning between the wavelengths of the external signal and that of the device’s injected mode. In general, wider bistable loops, higher on-off contrast ratio between output states and higher input power requirements for switching are observed as the applied bias and initial detuning are increased. This diversity of switching behaviors obtained with a 1310 QDot DFB laser under external optical injection, added to the theoretically superior properties of nanostructure lasers, offers exciting prospects for novel uses of these devices in all-optical logic and all-optical switching/routing applications in present and future optical telecommunication networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call