Abstract

A systematic study of degenerate two-wave mixing in the stationary regime in thin nonlinear local-response media is presented. The model is based on the coherent interaction of four waves, the two incident beams, and the two main diffracted waves. Analytical results are obtained in all cases investigated under the assumption of weak-beam amplification. It is demonstrated that the energy transfer arises only from the forward degenerate four-wave mixing terms. In particular, the theoretical results show two new features: (1) the gain factor of the interaction is substantially reduced because of the phase change associated with the two-wave mixing terms and (2) a phase mismatch can compensate for this phase change, leading to an appreciable gain enhancement. Moreover, the general case is solved numerically. Particular attention is given to the influence of separate two-wave and forward degenerate four-wave mixing terms. Self-diffraction effects and the gain dependence versus the ratio of the pump-beam intensity to the signal-beam intensity are investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call