Abstract
The paper discusses the traffic dynamics in microscopic level and analyzes the dynamics characteristics of the traditional Gazis-Herman-Rothery model, the optimal velocity model with delay, and the intelligent driver model. An essential feature differentiating those models is that the traditional Gazis-Herman-Rothery model only governs the vehicle dynamics in the car-following state, but the other two models encompass larger interaction state including the free-flow state and the acceleration from the vehicle initial state. From this study, it can be concluded: (i) the optimal velocity model and intelligent driver model are more complete than the traditional model; (ii) the existing optimal velocity model may produce an unrealistic vehicle interaction; (iii) the optimal velocity model with a realistic delay can produce a stable interaction, and (iv) the intelligent driver model still needs further development particularly to take into account the driver delay which is an important aspect in the traffic dynamics on the microscopic level, and finally, (v) those three models may produce similar dynamics characteristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Transportation Systems Engineering and Information Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.