Abstract
In this paper, we develop a new dynamic intelligent reflecting surface (IRS) beamforming (BF) framework for an IRS aided energy-constrained Internet-of-Things system, where multiple IRS BF patterns are employed to assist uplink transmission. To alleviate the channel estimation overhead incurred by the IRS, a novel two-timescale scheme is proposed to maximize the ergodic sum-rate. Specifically, multiple IRS BF patterns are first optimized based on the statistical channel state information (CSI). Under the obtained IRS BF patterns, the transmit power and time allocation for devices in each channel coherence interval are optimized based on the instantaneous CSI. By characterizing the lower bound of the objective value, we further analytically quantify the performance degradation incurred by using less IRS BF patterns to shed light on the fundamental performance-overhead tradeoff. Simulation results validate the effectiveness of our proposed design and demonstrate that only <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$33\%$</tex-math></inline-formula> of the total IRS BF patterns are needed to maintain <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$95\%$</tex-math></inline-formula> of the maximum achieved ergodic sum-rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.