Abstract

Edge computing has emerged for meeting the ever-increasing computation demands from delay-sensitive Internet of Things (IoT) applications. However, the computing capability of an edge device, including a computing-enabled end user and an edge server, is insufficient to support massive amounts of tasks generated from IoT applications. In this paper, we aim to propose a two-tier end-edge collaborative computation offloading policy to support as much as possible computation-intensive tasks while making the edge computing system strongly stable. We formulate the two-tier end-edge collaborative offloading problem with the objective of minimizing the task processing and offloading cost constrained to the stability of queue lengths of end users and edge servers. We perform analysis of the Lyapunov drift-plus-penalty properties of the problem. Then, a cost-aware computation offloading (CACO) algorithm is proposed to find out optimal two-tier offloading decisions so as to minimize the cost while making the edge computing system stable. Our simulation results show that the proposed CACO outperforms the benchmarked algorithms, especially under various number of end users and edge servers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.