Abstract

The sizes of snow slab failure that trigger snow avalanches are power-law distributed. Such a power-law probability distribution function has also been proposed to characterize different landslide types. In order to understand this scaling for gravity-driven systems, we introduce a two-threshold 2D cellular automaton, in which failure occurs irreversibly. Taking snow slab avalanches as a model system, we find that the sizes of the largest avalanches just preceding the lattice system breakdown are power-law distributed. By tuning the maximum value of the ratio of the two failure thresholds our model reproduces the range of power-law exponents observed for land, rock, or snow avalanches. We suggest this control parameter represents the material cohesion anisotropy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.