Abstract

This paper is concerned with the determination of the thermoelastic displacement, stress, conductive temperature, and thermodynamic temperature in an infinite isotropic elastic body with a spherical cavity in the context of the two-temperature generalized thermoelasticity theory (2TT). The two-temperature Lord-Shulman (2TLS) model and two-temperature Green–Naghdi (2TGN) models of thermoelasticity are combined into a unified formulation introducing the unified parameters. The medium is assumed initially quiescent. The basic equations have been written in the form of a vector-matrix differential equation in the Laplace transform domain which is then solved by (a) the state-space approach and (b) the eigenvalue approach for any set of boundary conditions. The general solution obtained is applied to a specific problem when the boundary of the cavity is subjected to thermomechanical loading. The numerical inversion of the transform is carried out using Fourier-series expansion techniques. The computed results for thermoelastic stresses, conductive temperature, and thermodynamic temperature are shown graphically for the Lord Shulman model and for two models of Green–Naghdi and the effects of two temperatures are discussed. A comparative study of the two methods has also been carried out.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.