Abstract

White-light-emitting (WLE) materials have promising and valuable applications in controllable lighting, screen displays and sensing. In this study, a two-step sequence of highly efficient artificial light-harvesting systems (ALHSs) with white light emission is successfully constructed in the aqueous phase through a non-covalent bond among imidazole derivatives (DIm), twisted cucurbit[14]uril (tQ[14]), eosin Y (ESY), and Nile red (NiR). The prepared linear supramolecular polymer (DIm@tQ[14]) constructed by DIm and tQ[14] through host–guest interaction is an ideal energy donor due to its superior aggregation-induced emission effect, which enables one-step energy transfer by loading ESY and two-step energy transfer by further loading NiR with a high efficiency of 91.47%. The emission color of the two-step sequential ALHSs changes from cyan to chartreuse then to orange-red, and bright white light emission can be achieved by controlling the donor/acceptor molar ratio. Moreover, the assemblies of the two-step sequential ALHSs can be applied to white LED materials. This research not only simulates the multi-step energy transfer process in nature but also has an attractive commercial value in the manufacturing of WLE materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.