Abstract

Myosin II, a conventional myosin, is dispensable for mitotic division in Dictyostelium if the cells are attached to a substrate, but is required when the cells are growing in suspension. Only a small fraction of myosin II-null cells fail to divide when attached to a substrate. Cortexillins are actin-bundling proteins that translocate to the midzone of mitotic cells and are important for the formation of a cleavage furrow, even in attached cells. Here, we investigated how myosin II and cortexillin I cooperate to determine the position of a cleavage furrow. Using a green fluorescent protein (GFP)-cortexillin I fusion protein as a marker for priming of a cleavage furrow, we found that positioning of a cleavage furrow occurred in two steps. In the first step, which was independent of myosin II and substrate, cortexillin I delineated a zone around the equatorial region of the cell. Myosin II then focused the cleavage furrow to the middle of this cortexillin I zone. If asymmetric cleavage in the absence of myosin II partitioned a cell into a binucleate and an anucleate portion, cell-surface ruffles were induced along the cleavage furrow, which led to movement of the anucleate portion along the connecting strand towards the binucleate one. In myosin II-null cells, cleavage furrow positioning occurs in two steps: priming of the furrow region and actual cleavage, which may proceed in the middle or at one border of the cortexillin ring. A control mechanism acting at late cytokinesis prevents cell division into an anucleate and a binucleate portion, causing a displaced furrow to regress if it becomes aberrantly located on top of polar microtubule asters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.