Abstract

We have proposed a two-step photon up-conversion solar cell (TPU-SC), which is a single junction solar cell comprising a wide gap semiconductor (WGS) and a narrow gap semiconductor (NGS) to break through the Shockley–Queisser limit for the single-junction solar cells. In the TPU-SC, below-gap photons of WGS excite the NGS and accumulate electrons at the WGS / NGS hetero-interface. The accumulated electrons at the hetero-interface are easily excited towards the WGS barrier by the low-energy photons, resulting in the efficient two-step up-conversion (TPU). We have experimentally demonstrated highly efficient current generation by the TPU. In this paper, we present the concept of the TPU-SC, theoretical prediction of the conversion efficiency of the TPU-SC, and experimental result of efficient photocarrier collection attributable to the TPU phenomenon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call