Abstract

A thin film encapsulation layer was fabricated through two-sequential chemical vapor deposition processes for organic light emitting diodes (OLEDs). The fabrication process consists of laser assisted chemical vapor deposition (LACVD) for the first silicon nitride layer and laser assisted plasma enhanced chemical vapor deposition (LAPECVD) for the second silicon nitride layer. While SiN x thin films fabricated by LAPECVD exhibits remarkable encapsulation characteristics, OLEDs underneath the encapsulation layer risk being damaged during the plasma generation process. In order to prevent damage from the plasma, LACVD was completed prior to the LAPECVD as a buffer layer so that the laser during LACVD did not damage the devices because there was no direct irradiation to the surface. This two-step thin film encapsulation was performed sequentially in one chamber, which reduced the process steps and increased fabrication time. The encapsulation was demonstrated on green phosphorescent OLEDs with I–V-L measurements and a lifetime test. The two-step encapsulation process alleviated the damage on the devices by 19.5% in external quantum efficiency compared to the single layer fabricated by plasma enhanced chemical vapor deposition. The lifetime was increased 3.59 times compared to the device without encapsulation. The composition of the SiNx thin films was analyzed through Fourier-transform infrared spectroscopy (FTIR). While the atomic bond in the layer fabricated by LACVD was too weak to be used in encapsulation, the layer fabricated by the two-step encapsulation did not reveal a Si–O bonding peak but did show a Si–N peak with strong atomic bonding. • Thin film encapsulation by laser assisted plasma enhanced chemical vapor deposition. • Buffer layer by laser assisted chemical vapor deposition prior to encapsulation. • Increase of stability and protection of plasma damage through in-line pre-deposition. • 3.59 times increased LT80 in green phosphorescent organic light emitting diodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.