Abstract
Summary Functional linear models are useful in longitudinal data analysis. They include many classical and recently proposed statistical models for longitudinal data and other functional data. Recently, smoothing spline and kernel methods have been proposed for estimating their coefficient functions nonparametrically but these methods are either intensive in computation or inefficient in performance. To overcome these drawbacks, in this paper, a simple and powerful two-step alternative is proposed. In particular, the implementation of the proposed approach via local polynomial smoothing is discussed. Methods for estimating standard deviations of estimated coefficient functions are also proposed. Some asymptotic results for the local polynomial estimators are established. Two longitudinal data sets, one of which involves time-dependent covariates, are used to demonstrate the approach proposed. Simulation studies show that our two-step approach improves the kernel method proposed by Hoover and co-workers in several aspects such as accuracy, computational time and visual appeal of the estimators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Royal Statistical Society Series B: Statistical Methodology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.