Abstract

In this letter, a new deep learning (DL) approach is proposed to solve the electromagnetic inverse scattering (EMIS) problems. The conventional methods for solving inverse problems face various challenges including strong ill-conditions, high contrast, expensive computation cost, and unavoidable intrinsic nonlinearity. To overcome these issues, we propose a new two-step machine learning based approach. In the first step, a complex-valued deep convolutional neural network is employed to retrieve initial contrasts (permittivities) of dielectric scatterers from measured scattering data. In the second step, the previously obtained contrasts are input into a complex-valued deep residual convolutional neural network to refine the reconstruction of images. Consequently, the EMIS problem can be solved with much higher accuracy even for high-contrast objects. Numerical examples have demonstrated the capability of the newly proposed method with the improved accuracy. The proposed DL approach for EMIS problem serves a new path for realizing real-time quantitative microwave imaging for high-contrast objects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.