Abstract

Solid-state electrochemistry of a tetracyanoquinodimethane (TCNQ)-modified electrode in contact with a tetrapropylammonium cation (Pr(4)N(+)) electrolyte showed two electron-transfer steps to give Pr(4)N(TCNQ)(2) (1) and Pr(4)N(TCNQ) (2) rather than the traditional one-electron step to directly give Pr(4)N(TCNQ). Two thermodynamically stable Pr(4)N(+)-TCNQ stoichiometries, 1 and 2, were synthesized and characterized. The degree of charge transfer (ρ) calculated from the crystal structure is -0.5 for the TCNQ moieties in 1 and -1.0 for those in 2. Raman spectra for Pr(4)N(TCNQ)(2) show only one resonance for the extracyclic C=C stretching at 1423 cm(-1), which lies approximately midway between that of TCNQ at 1454 cm(-1) and TCNQ(-) at 1380 cm(-1). Both the magnetic susceptibility and EPR spectra are temperature-dependent, with a magnetic moment close to that for one unpaired electron per (TCNQ)(2) unit in 1, whereas 2 is almost diamagnetic. Pressed discs of both complexes show conductivity (1-2×10(-5) S cm(-1)) in the semiconductor range. For 1, the position of zero current for the steady-state voltammograms implies 50% of TCNQ(-) and 50% TCNQ(0) is present in solution, thereby supporting a dissociation of (TCNQ)(2)(-) in solution, but is indicative of only TCNQ(-) being present for 2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call