Abstract

Prediction of electricity price is crucial for national electricity markets supporting sale prices, bidding strategies, electricity dispatch, control and market volatility management. High volatility, non-stationarity and multi-seasonality of electricity prices make it significantly challenging to estimate its future trend, especially over near real-time forecast horizons. An error compensation strategy that integrates Long Short-Term Memory (LSTM) network, Convolution Neural Network (CNN) and the Variational Mode Decomposition (VMD) algorithm is proposed to predict the half-hourly step electricity prices. A prediction model incorporating VMD and CLSTM is first used to obtain an initial prediction. To improve its predictive accuracy, a novel error compensation framework, which is built using the VMD and a Random Forest Regression (RF) algorithm, is also used. The proposed VMD-CLSTM-VMD-ERCRF model is evaluated using electricity prices from Queensland, Australia. The results reveal highly accurate predictive performance for all datasets considered, including the winter, autumn, spring, summer, and yearly predictions. As compared with a predictive model without error compensation (i.e., the VMD-CLSTM model), the proposed VMD-CLSTM-VMD-ERCRF model outperforms the benchmark models. For winter, autumn, spring, summer, and yearly predictions, the average Legates and McCabe Index is seen to increase by 15.97%, 16.31%, 20.23%, 10.24%, and 14.03%, respectively, relative to the benchmark models. According to the tests performed on independent datasets, the proposed VMD-CLSTM-VMD-ERCRF model can be a practical stratagem useful for short-term, half-hourly electricity price forecasting. Therefore the research outcomes demonstrate that the proposed error compensation framework is an effective decision-support tool for improving the predictive accuracy of electricity price. It could be of practical value to energy companies, energy policymakers and national electricity market operators to develop their insight analysis, electricity distribution and market optimization strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.