Abstract
ABSTRACTWe compare the commonly used two-step methods and joint likelihood method for joint models of longitudinal and survival data via extensive simulations. The longitudinal models include LME, GLMM, and NLME models, and the survival models include Cox models and AFT models. We find that the full likelihood method outperforms the two-step methods for various joint models, but it can be computationally challenging when the dimension of the random effects in the longitudinal model is not small. We thus propose an approximate joint likelihood method which is computationally efficient. We find that the proposed approximation method performs well in the joint model context, and it performs better for more “continuous” longitudinal data. Finally, a real AIDS data example shows that patients with higher initial viral load or lower initial CD4 are more likely to drop out earlier during an anti-HIV treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Statistics - Simulation and Computation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.