Abstract
Continuing our study of interrupted diffusion, we consider the problem of a particle executing a random walk interspersed with localized oscillations during its halts (e.g., at lattice sites). Earlier approaches proceedvia approximation schemes for the solution of the Fokker-Planck equation for diffusion in a periodic potential. In contrast, we visualize a two-state random walk in velocity space with the particle alternating between a state of flight and one of localized oscillation. Using simple, physically plausible inputs for the primary quantities characterising the random walk, we employ the powerful continuous-time random walk formalism to derive convenient and tractable closed-form expressions for all the objects of interest: the velocity autocorrelation, generalized diffusion constant, dynamic mobility, mean square displacement, dynamic structure factor (in the Gaussian approximation), etc. The interplay of the three characteristic times in the problem (the mean residence and flight times, and the period of the ‘local mode’) is elucidated. The emergence of a number of striking features of oscillatory diffusion (e.g., the local mode peak in the dynamic mobility and structure factor, and the transition between the oscillatory and diffusive regimes) is demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.