Abstract

For today's laptops, computer peripherals, and light load efficiency, improving battery life is a major task. High-end server applications are increasingly focusing on the dual step 48V into 12V into 1.8V VRM (Voltage Regulator Module) configuration. Because it efficiently delivers the isolated 12V output, the Inductor-Inductor-Capacitor (LLC) dc-dc converters are the recommended option of the initial step of conversion. The multi-phase Buck converter next converts it to 1.8V. Because the switching loss is lower, this study offers a high-efficiency half-bridge inverter LC resonant circuit, followed by a full-wave diode rectifier. Because of the LLC's reduced core loss and the multi-phase Buck converter's lower switching loss, as well as the simplified converter architecture's reduced number of switches, total light load efficiency will improve significantly. A step-down transformer is then used to lower the inverter voltage. Experiments on the two-stage VRM reveal a fast transient response as well as a light load and an improved efficiency, high compactness 48V into 12V into 1.8V Inductor Inductor Capacitor is built. The outcomes of the experiment reveal the benefits of the approaches proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call